Eliminate the parameter to find a Cartesian equation for the curve with parametric equations $x = 2 \sinh t$ $v = 3 \cosh t$

SCORE: _____ / 4 PTS

Also, based on the Cartesian equation, name the shape of the curve (the answer should be only one word).

An object moves in a straight line from the point (5, -9) at time t = 0, to the point (-1, -2) at time t = 1. SCORE: _____/4 PTS Find parametric equations for the object's motion.

$$x = 5 + (-1 - 5)t$$

 $y = -9 + (-2 - 9)t$
 $x = 5 - 6t$
 $y = -9 + 7t$

An object moves clockwise along the circle $x^2 + (y-1)^2 = 4$, starting at the point (0, -1) at time t = 0, SCORE: _____ / 6 PTS and ending at the same point at time $t = 2\pi$. Find parametric equations for the object's motion.

CENTER (0,1)
$$X = 0 + 2 \cos t$$
 $Y = 1 + 2 \operatorname{smt}$
 $S = 0$
 $S = 0$

$$x = 2(1 - t - t^3)$$

$$x = t^2 - t^3$$

SCORE: / 16 PTS

NOTE: The graph has been distorted: the x- and y-axes use different scales.

NOTE: You are NOT allowed to just plug in points, nor use guess and check.

$$y=0 \rightarrow t^{2}-t^{3}=0$$

 $t^{2}(1-t)=0$
 $t=0,1$
 $(x,y)=(2,0)$
 $(x,y)=(-2,0)$

MOVING FROM RIGHT @ t=0 TO LEFT@ t=

$$A = \int_{0}^{1} (t^{2} - t^{3})(2(-1 - 3t^{2})) dt \leftarrow SUBTRACT (1)$$
IF YOU DIDN'T WRITE It

[c] Find the equation of the tangent line at the left
$$x$$
 – intercept (ie. at the x – intercept where $x < 0$).

$$\frac{dy}{dx} = \frac{2t-3t^2}{-2(1+3t^2)} = \frac{-1}{-8} = \frac{1}{8}$$

SUBTRACT
$$y-0=\frac{1}{8}(x-2)$$

SUBTRACT $\rightarrow y=\frac{1}{8}(x+2)$
DIDN'T WRITE'y=

[d] Find
$$\frac{d^2y}{dx^2}$$
 at the right x – intercept.

$$\frac{dx^{2}}{dx^{2}} = \frac{\frac{d}{dt} \frac{2t - 3t^{2}}{-2(1+3t^{2})}}{to -2(1+3t^{2})} = \frac{1}{t}$$

Find
$$\frac{d^2y}{dx^2}$$
 at the right x - intercept.
 $\frac{d^2y}{dx^2} = \frac{d}{dt} \frac{2t - 3t^2}{-2(1+3t^2)} = \frac{(2-6t)(-2(1+3t^2)) - (2t-3t^2)(-2(6t))}{(-2(1+3t^2))^3}$

$$= \frac{2(-2)(1)}{(-2(1))^3}$$

$$= \frac{-4}{-8} = |1|$$